Llamafile

  • 2024/05/19

Overview

Today I read a bit about Llamafile. It lets you distribute and run LLMs with a single file. This project aims to run LLMs on consumer grade hardware (last time I heard about Consumer grade hardware was when learning HDFS, Spark few years ago) .

Following are the advantages of using Llamafile:

  • No installation is required
  • Support for GPUs from multiple vendors (so far when I read about LLMs online, it has always been NVIDIA / CUDA. there was never a discussion about Intel's or AMD'S GPUs)
  • CPU support (via llama.cpp)
  • Local Inference

Links


Handson

I followed the Quickstart instructions. Downloaded llava-v1.5-7b-q4.llamafile.

# Change file permissions
➜ chmod +x llava-v1.5-7b-q4.llamafile

➜ ls -l llava-v1.5-7b-q4.llamafile
-rwxrwxr-x 1 rk rk 4287904141 May 19 17:53 llava-v1.5-7b-q4.llamafile
# Execute
./llava-v1.5-7b-q4.llamafile

Encountered the following error:

zsh: exec format error: ./llava-v1.5-7b-q4.llamafile

There is already a comment about this on the GitHub page: If you use zsh and have trouble running llamafile, try saying sh -c ./llamafile. This is due to a bug that was fixed in zsh 5.9+. The same is the case for Python subprocess, old versions of Fish, etc.

sh -c ./llava-v1.5-7b-q4.llamafile -ngl 9999
note: if you have an AMD or NVIDIA GPU then you need to pass -ngl 9999 to enable GPU offloading
{"build":1500,"commit":"a30b324","function":"server_cli","level":"INFO","line":2856,"msg":"build info","tid":"11165056","timestamp":1716106492}
{"function":"server_cli","level":"INFO","line":2859,"msg":"system info","n_threads":6,"n_threads_batch":-1,"system_info":"AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | ","tid":"11165056","timestamp":1716106492,"total_threads":20}
{"function":"load_model","level":"INFO","line":435,"msg":"Multi Modal Mode Enabled","tid":"11165056","timestamp":1716106492}
clip_model_load: model name:   openai/clip-vit-large-patch14-336
clip_model_load: description:  image encoder for LLaVA
clip_model_load: GGUF version: 3
clip_model_load: alignment:    32
clip_model_load: n_tensors:    377
clip_model_load: n_kv:         19
clip_model_load: ftype:        q4_0
clip_model_load: loaded meta data with 19 key-value pairs and 377 tensors from llava-v1.5-7b-mmproj-Q4_0.gguf
clip_model_load: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
clip_model_load: - kv   0:                       general.architecture str              = clip
clip_model_load: - kv   1:                      clip.has_text_encoder bool             = false
clip_model_load: - kv   2:                    clip.has_vision_encoder bool             = true
clip_model_load: - kv   3:                   clip.has_llava_projector bool             = true
clip_model_load: - kv   4:                          general.file_type u32              = 2
clip_model_load: - kv   5:                               general.name str              = openai/clip-vit-large-patch14-336
clip_model_load: - kv   6:                        general.description str              = image encoder for LLaVA
clip_model_load: - kv   7:                     clip.vision.image_size u32              = 336
clip_model_load: - kv   8:                     clip.vision.patch_size u32              = 14
clip_model_load: - kv   9:               clip.vision.embedding_length u32              = 1024
clip_model_load: - kv  10:            clip.vision.feed_forward_length u32              = 4096
clip_model_load: - kv  11:                 clip.vision.projection_dim u32              = 768
clip_model_load: - kv  12:           clip.vision.attention.head_count u32              = 16
clip_model_load: - kv  13:   clip.vision.attention.layer_norm_epsilon f32              = 0.000010
clip_model_load: - kv  14:                    clip.vision.block_count u32              = 23
clip_model_load: - kv  15:                     clip.vision.image_mean arr[f32,3]       = [0.481455, 0.457828, 0.408211]
clip_model_load: - kv  16:                      clip.vision.image_std arr[f32,3]       = [0.268630, 0.261303, 0.275777]
clip_model_load: - kv  17:                              clip.use_gelu bool             = false
clip_model_load: - kv  18:               general.quantization_version u32              = 2
clip_model_load: - type  f32:  235 tensors
clip_model_load: - type  f16:    1 tensors
clip_model_load: - type q4_0:  141 tensors
clip_model_load: CLIP using CPU backend
clip_model_load: text_encoder:   0
clip_model_load: vision_encoder: 1
clip_model_load: llava_projector:  1
clip_model_load: model size:     169.18 MB
clip_model_load: metadata size:  0.14 MB
clip_model_load: params backend buffer size =  169.18 MB (377 tensors)
clip_model_load: compute allocated memory: 32.89 MB
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from llava-v1.5-7b-Q4_K.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = LLaMA v2
llama_model_loader: - kv   2:                       llama.context_length u32              = 4096
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 15
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_K:  193 tensors
llama_model_loader: - type q6_K:   33 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 4096
llm_load_print_meta: n_embd_v_gqa     = 4096
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 3.80 GiB (4.84 BPW)
llm_load_print_meta: general.name     = LLaMA v2
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.15 MiB
llm_load_tensors:        CPU buffer size =  3891.24 MiB
..................................................................................................
llama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:        CPU KV buffer size =  1024.00 MiB
llama_new_context_with_model: KV self size  = 1024.00 MiB, K (f16):  512.00 MiB, V (f16):  512.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.14 MiB
llama_new_context_with_model:        CPU compute buffer size =   164.01 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
{"function":"initialize","level":"INFO","line":489,"msg":"initializing slots","n_slots":1,"tid":"11165056","timestamp":1716106493}
{"function":"initialize","level":"INFO","line":498,"msg":"new slot","n_ctx_slot":2048,"slot_id":0,"tid":"11165056","timestamp":1716106493}
{"function":"server_cli","level":"INFO","line":3077,"msg":"model loaded","tid":"11165056","timestamp":1716106493}

llama server listening at http://127.0.0.1:8080

./images/1-llamafile-sample-sm.png